Distinct lytic vacuolar compartments are embedded inside the protein storage vacuole of dry and germinating Arabidopsis thaliana seeds.

نویسندگان

  • Susanne Bolte
  • Viviane Lanquar
  • Marie-Noëlle Soler
  • Azeez Beebo
  • Béatrice Satiat-Jeunemaître
  • Karim Bouhidel
  • Sébastien Thomine
چکیده

Plant cell vacuoles are diverse and dynamic structures. In particular, during seed germination, the protein storage vacuoles are rapidly replaced by a central lytic vacuole enabling rapid elongation of embryo cells. In this study, we investigate the dynamic remodeling of vacuolar compartments during Arabidopsis seed germination using immunocytochemistry with antibodies against tonoplast intrinsic protein (TIP) isoforms as well as proteins involved in nutrient mobilization and vacuolar acidification. Our results confirm the existence of a lytic compartment embedded in the protein storage vacuole of dry seeds, decorated by γ-TIP, the vacuolar proton pumping pyrophosphatase (V-PPase) and the metal transporter NRAMP4. They further indicate that this compartment disappears after stratification. It is then replaced by a newly formed lytic compartment, labeled by γ-TIP and V-PPase but not AtNRAMP4, which occupies a larger volume as germination progresses. Altogether, our results indicate the successive occurrence of two different lytic compartments in the protein storage vacuoles of germinating Arabidopsis cells. We propose that the first one corresponds to globoids specialized in mineral storage and the second one is at the origin of the central lytic vacuole in these cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional identification of sorting receptors involved in trafficking of soluble lytic vacuolar proteins in vegetative cells of Arabidopsis.

In eukaryotic cells, protein trafficking plays an essential role in biogenesis of proteins that belong to the endomembrane compartments. In this process, an important step is the sorting of organellar proteins depending on their final destinations. For vacuolar proteins, vacuolar sorting receptors (VSRs) and receptor homology-transmembrane-RING H2 domain proteins (RMRs) are thought to be respon...

متن کامل

Fluorescent reporter proteins for the tonoplast and the vacuolar lumen identify a single vacuolar compartment in Arabidopsis cells.

We generated fusions between three Arabidopsis (Arabidopsis thaliana) tonoplast intrinsic proteins (TIPs; alpha-, gamma-, and delta-TIP) and yellow fluorescent protein (YFP). We also produced soluble reporters consisting of the monomeric red fluorescent protein (RFP) and either the C-terminal vacuolar sorting signal of phaseolin or the sequence-specific sorting signal of proricin. In transgenic...

متن کامل

A SNARE complex unique to seed plants is required for protein storage vacuole biogenesis and seed development of Arabidopsis thaliana.

The SNARE complex is a key regulator of vesicular traffic, executing membrane fusion between transport vesicles or organelles and target membranes. A functional SNARE complex consists of four coiled-coil helical bundles, three of which are supplied by Q-SNAREs and another from an R-SNARE. Arabidopsis thaliana VAMP727 is an R-SNARE, with homologs only in seed plants. We have found that VAMP727 c...

متن کامل

Trafficking of vacuolar proteins: the crucial role of Arabidopsis vacuolar protein sorting 29 in recycling vacuolar sorting receptor.

The retromer is involved in recycling lysosomal sorting receptors in mammals. A component of the retromer complex in Arabidopsis thaliana, vacuolar protein sorting 29 (VPS29), plays a crucial role in trafficking storage proteins to protein storage vacuoles. However, it is not known whether or how vacuolar sorting receptors (VSRs) are recycled from the prevacuolar compartment (PVC) to the trans-...

متن کامل

Seed germination is blocked in Arabidopsis putative vacuolar sorting receptor (atbp80) antisense transformants.

The membrane receptor protein from pea, peabp80, has been shown to function by in vitro binding studies, and in vivo in yeast mutant, as a vacuolar sorting receptor (VSR). Families of proteins with homology to peabp80 have been identified in many plants including Arabidopsis: The family of membrane receptors, atbp80a-f (Arabidopsis thaliana binding protein 80 kDa) is highly homologous to peabp8...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant & cell physiology

دوره 52 7  شماره 

صفحات  -

تاریخ انتشار 2011